Machine Learning with R – Introduction

Instructor

Level

Next course

Location

Further and more detailed information, including the schedule, can be found in the current course tables in the syllabus of the respective course, if the course is offered in the next sessions. The following text serves as information on what can be expected in terms of content in the course.

Machine learning, put simply, involves teaching computers to learn from experience, typically for the purpose of identifying or responding to patterns or making predictions about what may happen in the future. This course is intended to be an introduction to machine learning methods through the exploration of real-world examples. We will cover the basic math and statistical theory needed to understand and apply many of the most common machine learning techniques, but no advanced math or programming skills are required. The target audience may include social scientists or practitioners who are interested in understanding more about these methods and their applications. Students with extensive programming or statistics experience may be better served by a more theoretical course on these methods.