Regression for Publishing



Next course


Further and more detailed information, including the schedule, can be found in the current course tables in the syllabus of the respective course, if the course is offered in the next sessions. The following text serves as information on what can be expected in terms of content in the course.

This course builds directly upon the foundations laid in Regression II, with a focus on successfully applying linear and generalized linear regression models. After a brief review of the linear regression model, the course addresses a series of practical issues in the application of such models: presentation and discussion of results (including tabular, graphical, and textual modes of presentation); fitting, presentation, and interpretation of two- and three-way multiplicative interaction terms; model specification for dealing with nonlinearities in covariate effects; and post-estimation diagnostics, including specification and sensitivity testing. The course then moves to a discussion of generalized linear models, including logistic, probit, and Poisson regression, as well as textual, tabular, and graphical methods for presentation and discussion of such models. The course concludes with a “participants’ choice” session, where we will discuss specific issues and concerns raised by students’ own research projects and agendas.